THE KINETIC THEORY OF HEAT CONDUCTION IN GAS
MIXTURES AT LOW TEMPERATURES
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The solution to the Boltzman equation is obtained by the Chapman—Enskog method for the
case of low temperatures. An expression is found with the help of the quantum "diffusion"
model for the thermal conductivity of a gas mixture at low temperatures.

Molecular translational degrees of freedom are "frozen in" at low temperatures, at a time when the
molecular spin makes some contribution to the thermal conductivity of the mixture, i.e., the degree of free-
dom associated with the internal motion.

Both monatomic and polyatomic molecules at low temperatures therefore exhibit internal degrees of
freedom. The translational degrees of freedom are "unfrozen” with a rise in temperature and beginning at
about 200°K, we must begin to give consideration to the contribution of the translational degrees of free-
dom to the heat conduction of the mixture.

The conduction of heat in a gas mixture at low temperatures is brought about by quantum "diffusion™

[5].

In calculating the low-temperature heat conductionof a mixture, we must bear in mind the quantum
effect. Quantum theory introduces two variations into the classical kinetic theory of gases.

1. Collisions between two gas molecules must be treated from the standpoint of the quantum theory
of collisions. The deflection of the relative-velocity veetor as a consequence of the collisions of a pair
of molecules with masses m, and m, is approximately the same as in the assumption — resorting to clas-
sical theory — that each molecule is surrounded by a "wave" field whose linear extent is on the order of the
"wavelength" [1, 2]

A= h/2n ) pkT.

This quantity is the greater, the lighter the molecule and the lower the temperature. The quantity A is
known as the de Broglie wavelength and characterizes deviation from the classical theory for the case in
which it is commensurate with or greater than the molecule diameter.

2. The second variation of classical theory is associated with the change in the Maxwell ~Beltzmann
equilibrium distribution function for the Bose —Einstein and Fermi—Dirac laws.

At very low temperatures, the wave fields associated with the molecules become very much larger
than the molecules and it is possible to have a state in which the lowest quantum levels are occupied. A
gas in this state of level-occupation is referred to as degenerate.

The first variation (the diffraction effect) is significant when the de Broglie wavelength is on the
order of the molecular dimensions.

The second variation (the symmetry effect) is significant when the de Broglie wavelength is on the
order of the distance between the molecules in the gas.

Unlike the first quantum effect, the second effect will be smaller at ordinary temperature and be-
comes important only at very low temperatures (pelow 2°K) andathigh densities.
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The state of the y-component gas mixture is completely described by the distribution function f(r, v,
t), which is a solution of the integrodifferential Boltzmann equation which, with consideration of the quan-
tum effects of the gas mixtures whose molecules exhibit internal degrees of freedom, has the form
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Here 0 = (h/mq)g(é/Gq), 6 =—1, 0, and 1, respectively, for the statistics of Fermi—Dirac, Maxwell —Boltz-
mann, and Bose —Einstein; Iij is the differential effective scattering cross section for the molecules and

the subscripts i and j denote the molecular state prior to collision, with the supersecripts k and ! denoting
the molecular state subsequent to the collisions.

The equilibrium distribution function is given by (1) in which the right-hand member is equal to zero.
For quantum systems we have various equilibrium distribution functions:

for the Maxwell —Boltzmann statistic
0 _
I LI ol
for the Bose —Einstein statistic
Fo ={A ex ( mqVs +e, ) — -
B—E q ©XP 2T B
for the Fermi—Dirac statistic
(©) . m,VZ -1
fep = {A"exP (_23‘ET—q e ) +eq} ‘
Let .
(0) mqu -
G = Aq €Xp _Q—kT +8qi _eq ) (2)

where
e =Eq/kT.
We will seek the approximate solution of the Boltzmann equation in the form
for =12 (1 + @q), @)
where Pgi is the function of the velocity, the temperature, and the pressure gradients.

Relationship (3) is substituted into (1) and the terms of second order are neglected [1, 3, 6]. Having
introduced the substitution 8; = qqu/ 1+ Gqf((ﬁ)) [3]1, we obtain

R 225” 1 19 (14 6,40 1
q

+ 8, £ (B + Bori —Bg: — Byrs) €11 sin xdydodv,. : (4)

The conditions for the solution of (4) have the form

S AP -0, By, =0,

“E Effé?’(ue F2) Bys Vetdvg =0, o)
_EESIC(O)(FI- 8,/@) {Tm (v, — Vo) -{—qu] Bs dv,= 0.
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We know that
2 m, Z/‘f,?) dv, =op(r, 1),
E 25 ‘O)v dv ~2mn v, = pvir, 1),
q fi

DO{EEREI

=U__(r, O)-+U, (r, )=Ur, 0. 6)

trans
(0)

We can calculate the derivatives of the function f,; (r, v, t), in Eq. (4). The final expression for these
derivatives include the coordinate and time derivatives of the functions ng (r,t), vo(r, t), and T(r, t). The
time derivatives are eliminated by means of transfer equations.

As a result of these transformations, the equation for the function ,qu has the form
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It is convenient to transform the collision integral to the form
]44' = F1/2 (Aq) F1/2 (Aq') J!Iq'» {8)
where

Jo = Fis (4 Fib (o) I3 [ (1182 191 + 0,42
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Here F,(4,) = 5
T'(s +1) A, (expu)—8,
0

is the Sommerfield integral {2], in the case of s = 1/2 equal to

F 2 32 , a? 2
1/2 (Aq) = —3— (h’l Aq) 1 - —*8-— (11’1 Aq) .

On the other hand,

m 3/2
Fia () =, (2;:qu) %

Equation (7) then assumes the form
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We can present the function 8; as

- 0lnT ¢ 0 , 0
Bu = — (1 + 6,747 [(A ) (Bq:—a;vo)—nxmz -dq')—Dq;vo]. (1)
-

Substituting (11) into (1 0) and equatmg the coefficients for identical gradlents we obtain the integral
equations for the functions Aq, B C »and Dy. In particular, for A and Cq we have:

Fia (A 189 (140,180 [(W - 3)+ (aqi..gq)] v

= ;gffj (Ag+ Ay —A,—A) glff 152 19 (140,55 (1 + 8,75 ) sin ydxdepdv,, (12)
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The additional conditions are
E V my, S (Cf;ql)—“cf;k)) quf;?) (1+ eq’ch))dv =0,
q
SVim, { AWo) I (14 8, f) dv, =0,
q

The quantities Kq and Cqy have the form

A=W, A (W),
C,=W,C, (Wq)

and are expressed in terms of the coefficients of the expansion in Sonin polynomials [6]
A, = WqEE Gamn S (W) P (e9),

—C =W 22 Sortn Siyp (Vo) P (egy)-

The Sonin polynomials satisfy the orthogonality conditions

o0

Sx"e"‘ S (S wdy = LM g,
P mi!
with the following relationships satisfied:
- m 3n, kT
Fh(A) j 1 (+0/49) S{ (V) Vid, = "2 i,
q
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: 2 my, 4 2 k

P(n)(sqi) represent polynomials of n-th degree such that P =1 and PW = €qi ~ £q-

Using the variational method of [1] to solve the integral equations (12) and (13), we derive an equa-~
tion for the determination of the expansion coefficients aymy and "31'%; In general form

BNVt =—Ri", (14)

g m'n
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where

Amm’ Qm nq V m—q Qmm 6 am o
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The quantity Rglxﬁk) in the case of the functions Kq and Cg' is equal fo
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The expression for the heat-flux vector has the form
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in which case
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We know that
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or by means of the orthogonality conditions for the Sonin polynomials we obtain

Dy = myn, (ET/2m,) 1 ag,,
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yR—— % k 2 :nq (2kT Im,) 2 a,,

q

Relationship (16) is somewhat indeterminate, because of the fact that it contains approximations of
various orders for AT, quv, and DY.  To eliminate this indeterminacy, the second approximation for the
diffusion coefficient must be substituted into (16).
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We know that the coefficient of mutual diffusion and the coefficient of thermal diffusion are asso-

ciated by the relationship

5 2 ymr@InT
V,=-" Z:mquqq/dq'—(nqmq) 1p? o

nqp i
7=l

To find dg' we introduce the substitution [7]

- 2 [mg\\2 ([ _ DI olnT
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Then

In this case the relationship
P4 B = — Rl

where
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with (16) for m = 0, m' = 0 and 1 can be written in the form

EQ ay = _2[ ( 2kT mO (aqh" th) + Ecqo Qgtll]
q

form =1 and m' = 0 and 1 we obtain

30l —— 33 dycah
q q q
Having determined the matrix Pqq' that is the reciprocal of agqv by the relationship

Al
2 Pthqq’ = ‘Skq’,
q

multiplying (20) by the sum 2 Pk1 q 11> and substituting the result into (19), we obtain

d, = 2kT 2—) QM’“EQ Q:lioqpn i ) .

We will evaluate the last term in (15) for the heat-flux vector, representing it in the form
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With (17) and (22) we find
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We determine A = A'+ A, and the quantity Y characterizes the contribution to the heat flow as a result of
diffusion.

Using the relationship

g1
2 22 aurnen = —Roms
g'=ln m’
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Having substituted these relationships into (25) and using the equation Ezg’fq, = 6210 we obtain
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we find that

where
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Assuming that Atpgpg = 0, we obtain the expression for the coefficient of thermal conductivity resulting
from the internal degrees of freedom in terms of the matrix determinant Qaiq'

Then
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Relationship (28) can be presented in the form

My =4 Exi/L?,},'“, (30)
q

and the term ng’},) can be expressed in the form of a ratio of the diffusion coefficient so that

v
Nx,r D -1
A= E:npqqcvqaﬂ( Z:T ﬁ) : (31)
s q g

g
Since Aq = anchqin, the expression for the coefficient of thermal conductivity for the gas mixture »

at low temperatures has the form
v

A
A= — - (32)
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X
=1 1 4 29 Tag
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NOTATION

my is the mass of the g-th kind of molecule;
h is the Planck constant;
k is the Boltzmann constant;
i is the reduced mass of the molecule;
Vg is the velocity of the g-th kind of molecule;
Gq is the statistical weight of the g-th kind of molecule;
Vg =vq — Vo is the thermal velocity of the molecule;

is the temperature;
ny is the numerical density of the q-th kind of molecule;
p is the total density of the gas mixture;
\_7V>q is the reduced velocity of the g-th kind of molecule;
Yaq' = Vitgq'/ XKT)ggqr 18 the reduced initial relative velocity;
g =Vq—Vvq' is the relative velocity;
Sl(lm)(x) are Sonin polynomials;
A is the coefficient of thermal conductivity for the mixture;
Dyq' is the coefficient of mutual diffusion;
Dg is the coefficient of thermal diffusion;
;q is the diffusion velocity of the q-th kind of molecule;
Xq is the molar concentration of the g-th component;
Cvin is the heat capacity due to the internal degrees of freedom;
vy is the mean mass velocity;
Ay is the thermal conductivity of the q-th component;
t is the time.
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